For the circuit shown:

(a) Apply current division to express \mathbf{I}_{C} and \mathbf{I}_{R} in terms of \mathbf{I}_{S} (Not in terms of $\mathbf{V}_{\text {s. }}$).
(b) Using \mathbf{I}_{S} as reference, accurately sketch a relative phasor diagram showing $\mathbf{I}_{C}, \mathbf{I}_{R}$, and \mathbf{I}_{S} and verify that the vector sum $\mathbf{I}_{R}+\mathbf{I}_{C}=\mathbf{I}_{S}$ is satisfied.
(c) Now, fully analyze the circuit to determine \mathbf{I}_{s} and then accurately sketch the absolute phasor diagram with $\mathbf{I}_{C}, \mathbf{I}_{R}$, and \mathbf{I}_{S} drawn according to their true phase angles.

